Polymeric Resins
for VOC Removal
from Aqueous Systems

Yoram Cohen
Department of Chemical Engineering
and
Center for Environmental Risk Reduction
University of California, Los Angeles
Los Angeles, California 90095

© 1998, Yoram Cohen, UCLA
Polymeric Resins for VOC Removal:

Outline

• Motivation
• Attributes of polymeric resins
• Adsorption capacities
• Performance in dynamic column adsorption processes
• Regeneration
• Summary
Separation Processes to the Rescue!

Clean Air

Impurity

Raw Material → Separation → Process → Separation

Effluent Water → Recycle

By Products

Clean Water

Products

© 1998, Yoram Cohen, UCLA
Some Application Areas

- Chemical Analysis
- Ion-exchange resins
- Non-adsorbing aqueous size exclusion chromatography (SEC) resins
- Affinity resins for Liquid chromatography
- Adsorption of organics from aqueous systems
- Organic liquid-liquid separations

© 1998, Yoram Cohen, UCLA
Adsorption of a Mixture of Chlorinated Pesticides in a Packed-Bed

Polymer Resins and Activated Carbon

<table>
<thead>
<tr>
<th>Polymeric Resins</th>
<th>Activated Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

- **Activated Carbon**
 - High surface area (> 1000 m²/g)
 - High heat of adsorption (>10 kcal/mol)
 - Thermal regeneration (e.g., steam regeneration).
 - 5%-10% degradation per cycle
 - Readily available, low cost (~ $2/kg), general adsorbent material
 - Spent carbon may have to be treated as hazardous waste
Polymeric Resins: Major Performance Issues

- Are the surface area and pore size distribution suitable for sorption of VOCs?
- Can solute-polymer affinity be controlled?
- Can polymeric resins be easily regenerated?
- Are polymeric resins stable for cyclic operation?
- Are there severe mass transfer limitations?
Area, Volume and Wettability

- Pore size/volume distribution
- Surface area
- Inaccessible pore volume and wettability
Surface Area Improvements
<table>
<thead>
<tr>
<th>RESIN</th>
<th>SURFACE AREA (M²/G)</th>
<th>PORE VOLUME (CM³/G)</th>
<th>PORE RADIUS (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-400 (Activated Carbon)</td>
<td>1078</td>
<td>0.652</td>
<td>14.7</td>
</tr>
<tr>
<td>XAD-2 (SDVB)</td>
<td>353</td>
<td>0.78</td>
<td>48.3</td>
</tr>
<tr>
<td>XAD-4 (SDVB)</td>
<td>870</td>
<td>1.18</td>
<td>24.5</td>
</tr>
<tr>
<td>XAD-16 (SDVB)</td>
<td>889</td>
<td>1.75</td>
<td>39</td>
</tr>
<tr>
<td>XAD-8 (Poly(methylacrylate)a)</td>
<td>126</td>
<td>0.63</td>
<td>98</td>
</tr>
<tr>
<td>Reillex-425 Polyvinylpyridine-divinylbenzene</td>
<td>110</td>
<td>0.63</td>
<td>156</td>
</tr>
<tr>
<td>Polyclar-AT Polyvinylpyrrolidone, crosslinkedb</td>
<td>1.2</td>
<td><0.004</td>
<td><10</td>
</tr>
<tr>
<td>XUS (43493.01)</td>
<td>1100</td>
<td>1.3</td>
<td>23.5</td>
</tr>
<tr>
<td>MN-150</td>
<td>821</td>
<td>1.01</td>
<td>39.9</td>
</tr>
<tr>
<td>MN-170</td>
<td>1066</td>
<td>1.4</td>
<td>26</td>
</tr>
</tbody>
</table>

a Poly(methylacrylate)

b Polyvinylpyrrolidone, crosslinked
Macropores, Micropores and Inaccessible Pore Volume

<table>
<thead>
<tr>
<th>Resin</th>
<th>A_{total} (cm2/g)</th>
<th>A_{micro} (cm2/g)</th>
<th>V_{total} (cm3/g)</th>
<th>V_{micro} (cm3/g)</th>
<th>$V_{\text{ina}}/V_{\text{total}}$ (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XUS</td>
<td>1100</td>
<td>772</td>
<td>1.30</td>
<td>0.39</td>
<td>0.11</td>
</tr>
<tr>
<td>Mn150</td>
<td>698</td>
<td>554</td>
<td>1.01</td>
<td>0.30</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn170$^{(a)}$</td>
<td>1066</td>
<td>836</td>
<td>1.40</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>XAD-4</td>
<td>845</td>
<td>114</td>
<td>1.10</td>
<td>0.05</td>
<td>0.43</td>
</tr>
<tr>
<td>XAD-16</td>
<td>889</td>
<td>71</td>
<td>1.75</td>
<td>0.02</td>
<td>0.46</td>
</tr>
</tbody>
</table>

$^{(a)}$ Laboratory grade
Prewetting of Hydrophobic Resins

Bulk Fluid

Pore Fluid

a Cluster of Hydrophobic Micro-spheres

Water

Methanol

Air or Vapor
Solute-Polymer Affinity

- Hanson solubility parameter approach
- Adsorption and swelling (absorption)
- Unexpected multi-solute behavior

© 1998, Yoram Cohen, UCLA
Adsorption of VOCs onto Polymeric Resins - A Simple Correlation
PCE Adsorption Isotherms
ADSORPTION onto POLYSTYRENE XAD-4

FUGACITY INTERPRETATION

SURFACE CONCENTRATION (mmole/m²)

○ Phenol
△ TCE
▼ CHCl₃
□ PCE
◇ CH₂Cl₂

FUGACITY (atm)

© 1998, Yoram Cohen, UCLA
Adsorption/Regeneration System

1 a-f Solvent Reservoirs
2 Solvent Select Valve
3 a,b Piston Pumps
4 a,b High Pressure Mixer

5 Adsorber column
6 UV Detector
7 SIM Box
8 386sx Computer

© 1998, Yoram Cohen, UCLA
Cyclic Adsorption/Regeneration Process

- In Water
- In Methanol

Diagram showing the process with stages labeled a to e, and time axis indicating progression through the stages.
Column Regeneration

- In-situ solvent regeneration of resin with aliphatic alcohols
- Cyclic Adsorption/regeneration process
Breakthrough Curve for Chlorobenzene in XUS Column

\[Q = 20 \text{ ml/min} \]
\[C_0 = 250 \text{ mg/l} \]
Regeneration Curve for Fixed-Bed XUS Column Saturated with Chlorobenzene.
Recovery of Chlorobenzene from XUS Resin
Adsorption of Benzoic Acid onto MN-170
Flow rate = 2 ml/ min
Bed volume 3.53 cm³
C₀ = 400 mg/l
Regeneration of MN-170 Column Saturated with Benzoic Acid
1 - 400 mg/l
2 - 300 mg/l
3 - 200 mg/l
4 - 100 mg/l
Isotherms: Benzoic Acid Adsorption onto MN-170
Multiple Regenerant Passes

Benzoic Acid Recovery from MN-170 column using a recycled Methanol Stream

Concentration of Benzoic Acid in methanol (g/l)
Multiple Regenerant Passes

Benzoic Acid Recovery from MN-170 column using a recycled Methanol Stream
Solute Recovery and Solvent Regeneration

- Solute is concentrated in the regenerating stream
- Concentration factor: 10-100
- Solvent can be recycled up to 3-4 cycles
- Regenerate solvent using appropriate separation method
Chlorobenzene adsorption on MN-150 in a column relative to the initial equilibrium adsorption capacity. Every other cycle is plotted for clarity.
Column Adsorption Regeneration Cycles

Relative mass of chlorobenzene adsorbed onto XUS resin for repeated adsorption/regeneration cycles

Resin Stability
Resin Stability

Resin’s Performance for Repeated Adsorption/Regeneration Cycles

Relative mass of benzoic acid adsorbed onto XUS resin over repeated process cycles
Resin Stability

- Adsorption capacity is retained over many adsorption/regeneration cycles
Mass Transfer Limitations

<table>
<thead>
<tr>
<th>Source</th>
<th>Adsorbent</th>
<th>Temperature (K)</th>
<th>Intraparticle Diffusivity $x10^{11}$ $[m^2/s]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>Macronet</td>
<td>293</td>
<td>1.05</td>
</tr>
<tr>
<td>Huang et al. (1994)</td>
<td>Macoreetricular</td>
<td>300</td>
<td>2.71</td>
</tr>
<tr>
<td>Takeuchi and Suzuki (1984)</td>
<td>Activated Carbon</td>
<td>298</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Polymeric Resins and Activated Carbon

Polymeric Resins
- High surface area (>1000 m²/g)
- Low heat of adsorption (<4 kcal/mol)
- Solvent regeneration (e.g., using aliphatic alcohols)
- No loss in performance over many cycles
- Limited choice and high cost (~ $20/kg)
- Chemical selectivity is feasible

Activated Carbon
- High surface area (> 1000 m²/g)
- High heat of adsorption (>10 kcal/mol)
- Thermal regeneration (e.g., steam regeneration).
- 5%-10% degradation per cycle
- Readily available, low cost (~ $2/kg), *general adsorbent* material
- Spent carbon may have to be treated as hazardous waste
SUMMARY

• Polymeric sorption resins can be regenerated in-situ by solvent regeneration or thermal recovery.
• Cyclic adsorption/regeneration process is feasible.
• Solvent regeneration and solute recovery from the solvent may be the costly part of the process.
• The dominance of low cost activated carbon is an important reason for the small market share of polymeric resins and thus their high cost.
SUMMARY (Cont’d)

- Capital cost for polymeric resin packed-beds should is expected to be at the same level as for granular activated carbon adsorption.
 - Virtually no attrition of resin
 - Resin stability is maintained over many cycles
 - Regeneration can be done in-site under mild conditions
- Pilot-scale demonstration is the next step
STUDENTS

Dr. Thomas E. Browne
Dr. Gloria M. Gusler
Dr. Varun Taepaisitp
Mr. Jonathan D. Klei
Mr. Markov Alexander

Research Associate

Dr. Illam Park
For additional information:
E-Mail: yoram@ucla.edu
Web Site: http://www.polysep.ucla.edu

Pertinent Publications:

